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Irradiation damage accumulation in metals is studied via a dynamical description of the evolution of a
system of interacting crystal defects, focusing on the complex behavior caused by system instability
and symmetry-breaking. The case of a supercritical void ensemble in a temperature range where void
growth is significantly affected by vacancy emission is specifically considered. Conditions of instability
are found in the growth dynamics of the void system, the resulting bifurcation of which causes the
shrinkage of some voids and the growth of others, resulting in coarsening of the ensemble. The presence
of a small amount of one-dimensionally migrating self-interstitials with mean-free path comparable to
the average distance between voids can bias the void coarsening process, such that the non-aligned voids
have a much larger probability to shrink than the aligned ones. The post-bifurcation evolution leaves
voids aligned along the crystallographic directions to form an imperfect lattice with empty lattice sites
eventually filled by preferred nucleation. For this process to occur the irradiation temperatures must
be higher than 0.4 of the melting temperature. The typically low number densities of voids at these tem-
peratures necessarily entail a void lattice parameter much larger than when vacancy emission is negligi-
ble. The implication of the formation of the hyper void-lattice, an appellation adopted from earlier
studies, on properties of one-dimensionally migrating self-interstitials is also discussed.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

Microstructure development during particle irradiation often
results in nano-scale ordered structures. Particle irradiation typi-
cally produces regions of displacement damage at a rate of 1012

collision events per second per cm3. When the damaged region
cools down, crystal defects are ‘quenched in’. As irradiation pro-
ceeds, crystal defects accumulate and interact, and the microstruc-
ture evolves under non-linear driving forces. The evolution of the
accumulating defects is conventionally described by coupled rate
equations, analogous to chemical processes. The complexity of
the dynamics of such coupled nonlinear systems is well known
[1]. However, to maintain the manageability of the calculation, a
simplifying mean-field approximation is usually adopted, in which
the spatial and size distributions of the sinks and the mobile-defect
concentrations are averaged out. Despite the apparent simplicity of
the equations, the corresponding dynamical behavior is not neces-
sarily simple. Complexity due to dynamical instabilities and
bifurcations gives rise to phase-change like behavior of the system
[2–4]. This issue is even more pronounced when the spatial and
size distributions [5–9] of the reaction partners are explicitly taken
into account. Thus, when the long-wave-length solution becomes
unstable, dominance of the shorter wave length leads to spatial
ll rights reserved.
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ordering [5–8]. Instability in the size distribution function leads
to void coarsening when the stochastic nature of the irradiation
damage and defect accumulation processes are taken into account
[9]. The presence at the instability point of a small bias due to one-
dimensionally migrating self-interstitials with mean-free path
comparable to the average distance between voids influences the
void coarsening process such that shrinkage predominantly occurs
with the non-aligned voids, and growth with the aligned ones. The
post-bifurcation evolution then leaves voids aligned along the
crystallographic directions to form an imperfect lattice with empty
lattice sites eventually filled by preferred nucleation.

Indeed, the crystallographic structure and the orientation of
void lattices in irradiated metals are well known to follow those
of the host lattices [5]. For this reason, self-interstitial atoms (SIAs)
moving one-dimensionally along the close-packed crystallographic
directions have been a prime factor in many studies of void-lattice
formation [2–4, 6–11]. Yet, the detail mechanism is still controver-
sial. Recent Monte Carlo simulation [12] suggests that the 1-D self-
interstitial transport of either the crowdions or small interstitial
clusters may bring about coalescence between neighboring voids
along the crystallographic directions. Coalescence must not be
overwhelming for void-lattice formation to be feasible. In another
aspect, for a void lattice to form from a randomly distributed
ensemble of supercritical voids [5,13], non-aligned supercritical
voids outside lattice positions have to disappear. As shown in [9],
1-D interstitial diffusion by itself does not cause the non-aligned
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supercritical voids to shrink away. It only leads asymptotically to
an ensemble in which smaller non-aligned voids coexist with lar-
ger aligned ones.

In some cubic metals such as vanadium and aluminum, molec-
ular dynamics simulations show that intracascade clustering is an
event of low probability [14,15]. Available experimental data on
void swelling in aluminum is also completely explicable in terms
of the concept of standard rate theory based on the dislocation bias
[16–19]. Production bias [20] and initial defect clustering in cas-
cades do not seem to play an important role. This indicates that
the actual fraction of long-range 1-D moving interstitials needed
for void-lattice formation may not have to be significant.

Experiments find that void ordering is usually preceded by the
coarsening of randomly distributed supercritical voids in an
ensemble, resulting in the growth of the larger voids and the
shrinkage of the smaller ones [5,13]. In this regard, one may note
that void coarsening may occur due to the dynamic instability of
the void-size distribution, caused either by the usual vacancy emis-
sion, or as a stochastic effect due to the fluctuation of point defect
fluxes received by the voids [9,21–23]. The former occurs because
of the instability caused by the positive feedback effect due to the
increasing vacancy emission from a shrinking void. In the latter
case, when voids shrink under fluctuating point-defect fluxes there
is also a positive feed-back action because the probability of disso-
lution of the supercritical voids increases as the voids shrink [9,21–
23]. That void dissolution does happen under this condition has
been explicitly demonstrated both analytically via the solution of
the Fokker–Planck equation [23], and numerically via the solution
of the time-dependent master equation [22].

In a previous paper [9] we showed that when the average net
vacancy flux received by the voids became sufficiently low, dy-
namic instability of the void-size distribution might occur, and a
fraction ei of self-interstitials as small as �1% moving one-dimen-
sionally was enough to instigate stochastic dissolution of the
non-aligned voids. The critical condition was typically satisfied
when the swelling rate _S dropped below 0.1%/NRT dpa. We also
showed that the aligned voids were more resistant to shrinkage
than the non-aligned ones because of their larger growth rate.
The elimination of non-aligned voids would feed the growth of
the aligned ones and at the same time created a partial void lattice
with many empty lattice sites where the ‘shadowing’ [2,3] of
neighboring voids produced local depressions of 1-D self-intersti-
tial fluxes. With a void nucleation probability that increases expo-
nentially with the net vacancy flux [23], practically nucleation of
all new voids occurs in these SIA-deficient locations [9]. The end
result of this development is that only the aligned voids survive
and multiply to form a void lattice, as the winning species of the
Darwinian competition [9]. We note that in this process, the most
important role of the 1-D moving self-interstitials is as a bias favor-
ing the nucleation and survival of the aligned voids during the
coarsening process. Due to the highly selective void nucleation
sites, void coalescence due to the 1-D self-interstitial transport is
unimportant as discussed in [9,24].

Void dissolution due to stochastic fluctuations may occur only
when both the void growth rate and the average void radius are
sufficiently small [9,21–23]. This condition is satisfied in most
cases where void-lattice formation is observed [5,25–27]. Excep-
tions are found in the case of the so called hyper void lattices, such
as in neutron irradiated aluminum, where lattices with very large
lattice parameter (200–250 nm) are formed from voids as large
as 60–90 nm in diameter, undergoing healthy growth (swelling
rate �0.5%/NRT dpa) [28,29]. Obviously, stochastic fluctuations
can hardly have any effect on the evolution of voids of this size.

As mentioned in the foregoing, dynamic instability of the void-
size distribution due to the positive feed-back of vacancy emission
from a shrinking void may also be reflected in the coarsening of a
void ensemble as in Ostwald ripening. Indeed, it has been shown
analytically that the dynamics of evolution of a spatially homoge-
neous distribution of voids is only conditionally stable at a temper-
ature where vacancy emission from the voids is important [30,31].
Since the aligned voids ‘shield’ each other against 1-D moving SIAs,
they receive a reduced flux of self-interstitials [2,3]. As a result, the
aligned voids will be larger in general than the non-aligned ones,
and hence have lower vacancy emission rates. This suggests that
non-aligned voids will dissolve in preference to the aligned ones
during coarsening. It is our aim in this paper to examine in greater
detail the possible dynamic instability due to vacancy emission as
a mechanism for the dissolution of non-aligned voids during void-
lattice formation. We shall adopt an analytical approach, and the
calculated results will be discussed in comparison with the avail-
able experimental data on void hyperlattices.

2. Dynamic stability of the size distribution of a void ensemble

We consider the evolution of a void ensemble, in which the ra-
dius of the mth void is denoted by Rm. Taking into account vacancy
emission from the voids, the boundary conditions on the void sur-
face is given by,

CvðrÞjjr�rm j¼Rm
¼ CsðRmÞ ¼ C1expð2csX=kTRmÞ: ð1Þ

Here Cs (Rm) is the equilibrium concentration of vacancies on its sur-
face at an absolute temperature T, C1 is the equilibrium vacancy
concentration at T far from any sink, cs is the surface tension coef-
ficient, X is the atomic volume and k is the Boltzman constant. In
Eq. (1) we neglect the gas pressure, and assume that the dominant
stress on the void is due to the surface tension. For self-interstitials
we assume the zero-boundary conditions on the void surfaces.

Let us first consider the major component of point-defects for
which the mobility is three-dimensional (3-D) and assumed isotro-
pic for simplicity. In the space between the voids, their local stea-
dy-state concentrations satisfy the conservation equations:

Gj þ Djr2Cj � DjZjqdðCj � Cj1Þ ¼ 0; ð2Þ

where Gj (j = i,v) is the effective production rate of point defects, Dj

and Cj (r) are the 3-D diffusion coefficient and the concentration of
point defects at the location r, respectively, qd is the total disloca-
tion density, Zj is the reaction constant between dislocations and
three-dimensionally moving point defects, and Cj1 is the equilib-
rium concentration of point defects. Since Ci1 << Cv1, in the follow-
ing we put Ci1 = 0, and Cv1 = C1. For simplicity we also assume
Zv = 1, and Zi = Z.

Following [31], the solution of Eq. (2) can be written as

DjCjðrÞ ¼ DjC
0
j þ

X
m

Wjm

jr� rmj
expð�

ffiffiffiffiffiffiffiffiffiffi
Zjqd

q
jr� rmjÞ; ð3Þ

where Cj
0 is the homogeneous solution of Eq. (2), and Wjm are con-

stants determined by the boundary conditions. The summation in
Eq. (3) is taken over all voids in the ensemble, which are assumed
to be randomly distributed in space with a number density N.

We now consider the dynamical stability of an ensemble of
voids characterized by a radius R. Suppose the mth void is sub-
jected to an infinitesimal perturbation and its radius becomes
Rm = R + dRm. Then, when both RN1/3 and Rqd

1/2 << 1, within the
first order approximation we have

Wjm ¼Wj þ ~Wj
dRm

R
; ð4Þ

with

Wi ¼ ~Wi ¼ �
RGi

ð4pNRþ ZqdÞ
; ð5Þ
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Fig. 1. Temperature dependence of Kcr, the critical dose rate below which the
homogeneous void distribution is unstable, in various metals for the void densities
typical for the corresponding metals (Z = 1.1 for Al, and Z = 1.05 for Nb and Mo).
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Wv ¼ �
R

ð4pNRþ qdÞ
½Gv � DvqdðCsðRÞ � C1Þ�; ð6Þ

~Wv ¼Wv �
2DvCsðRÞcsX

RkT
: ð7Þ

The corresponding void growth rate is given by

4pR2
m

X
dRm

dt
¼ 1

X

Z
Sm

dSmnmðDvrCv � DirCiÞ

¼ 4p
X
ðWim �WvmÞ; ð8Þ

where nm is the unit vector of the external normal to the surface Sm

of the mth void. Using Eqs. (4)–(7) can be written as

R2
m

dRm

dt
¼ ½Gv � DvqdðCsðRÞ � C1Þ�Rm

ð4pNRþ qdÞ
� RmGi

ð4pNRþ ZqdÞ

þ 2DvCsðRÞcsX

R2kT
dRm; ð9Þ

or

R2
m

dRm

dt
¼ eiGRm

ð4pNRþ qdÞ
þ ðZ � 1Þqd

ð4pNRþ qdÞ
2 f½ð1� eiÞG� G0�Rm

þ 2~GdRmg; ð10Þ

if we assume (Z – 1) << 1. Here G = Gv, ei is the fraction of self-inter-
stitials that do not undergo conventional 3-D migration, i.e.,
Gi = (1 – ei)G, and

G0 ¼
Dvð4pNRþ qdÞðCsðRÞ � C1Þ

ðZ � 1Þ ; ð11Þ

~G ¼ ð4pNRþ qdÞ
2

ðZ � 1Þqd

DvCsðRÞcsX

kTR2 : ð12Þ

Here G0 and ~G are both temperature-dependent quantities related
to the vacancy emission rate. Note that Eq. (9) can also be derived
from the conventional rate equations. Indeed, the right-hand side
of this equation can be written as Rm[DvCv – DiCi – DvCs(R + dRm)],
where dRm << R, and the point-defect fluxes DjCj are determined
by the conventional rate equations. The relative importance of the
last term of Eq. (9) can be seen by writing the first two terms as
Rm(dS/dt)/k2

c , where k2
c = 4pNR is the void sink strength, and dS/dt

is the void swelling rate.
Keeping only terms linear in dRm, Eq. (10) can be written as

R2
m

dðdRm=RÞ
dt

¼ R2
m

R
dRm

dt
� Rm

dR
dt
� 2dRm

dR
dt
¼ 2ðZ � 1Þqd

ð4pNRþ qdÞ
2

� ~Gþ G0 � ð1� eiÞG�
eiGð4pNRþ qdÞ
ðZ � 1Þqd

� �
dRm

R

� �
:

ð13Þ

We assume that all voids are initially supercritical, such that the
void number density satisfies G > G0. Let us consider, for illustrative
purposes, the simplest case in which free vacancies and free
interstitials are produced in equal numbers, i.e., ei = 0. Then for
G > ~G + G0, the perturbation dRm in Eq. (13) decays exponentially
with time, and the evolution of the void ensemble is dynamically
stable. On the other hand, when G < ~G + G0, the positive feedback ef-
fect of vacancy emission dominates and any perturbation dRm in the
void size distribution grows exponentially, no matter how small it is
initially. In other words, the void ensemble becomes dynamically
unstable. As a result, some of the initially supercritical voids may
turn subcritical and shrink away, while others will continue to grow.

Similar to conventional void coarsening, the effective net va-
cancy flux decreases with dose as the void sink strength increases,
as reflected by the term (Z – 1)qd/(4pNR + qd)2 in Eqs. (10), (12). As
a consequence, the smallest supercritical voids may become sub-
critical. The difference is that the broadened void-size distribution
here is not due to their initial variations, but is characteristic of the
dynamics of the evolution of the void-size distribution function.
Note that for sufficiently large voids in the initial distribution,
i.e., R > 2Xcs/kT, ~G is an increasing function of R. Accordingly, we
may define the critical defect generation rate Kcr = (~G + G0)/ec be-
low which the homogeneous spatial distribution is dynamically
unstable. Here ec is the fraction of point defects surviving the in-
tra-cascade recombination.

From Eqs. (11) and (12), it is clear that the self-diffusion energy
is the governing parameter responsible for the strong temperature
dependence of Kcr Therefore, in Fig. 1 we plot Kcr in NRT dpa/s [32]
as a function of temperature for Al, Nb and Mo only for void den-
sities for which vacancy emission is significant. At the same time,
we also note that Kcr increases with the void-number density
which is a decreasing function of temperature. The temperature
dependence of the void-number density should be taken into ac-
count if Fig. 1 is to be interpreted quantitatively. It can be seen that
under typical reactor dose rates of 107–106 NRT dpa/s, the spatially
homogeneous void distribution of Al and Mo is dynamically unsta-
ble due to vacancy emission for irradiation temperatures above
approximately 0.39Tm. This is about 90 �C for aluminum and
860 �C for molybdenum (see Table 1). For niobium instability oc-
curs at about similar temperatures T/Tm � 0.41 (=830 �C) even for
dose rates as high as 10�3 NRT dpa/s under ion irradiation. Exper-
imental observation of partial ordering of large voids in neutron
irradiated copper at 420 �C (ffi0.5Tm) [34] also corroborates the
instability condition K < Kcr.

From the foregoing discussion, it can be seen that vacancy emis-
sion may indeed drive the dynamics of the evolution of a void
ensemble to instability, resulting in its coarsening. In the presence
of a biasing mechanism serving as a selection process, the instabil-
ity may lead to the development of a spatially heterogeneous
distribution with a geometric structure. This forms the subject of
discussion in the following section.



Table 1
Material parameters

Parametera Molybdenum Niobium Aluminum

Atomic volume, X (m3) 1.34 � 10�29 1.617 � 10�29 1.03 � 10�29

Vacancy migration energy (eV) 1.5 0.55 0.6
Vacancy formation energy (eV) 3 2.9 0.6
Vacancy diffusivity

pre-exponential (m2/s)
1.0 � 10�5 1.5 � 10�6 1.0 � 10�5

Surface free energy, cs (J/m2) 2.05 2 1.1
Melting temperature, Tm (K) 2898 2690 933

a Material parameters, except surface free energy, are taken from Ref. [33].
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3. Effects of one-dimension self-interstitial diffusion

The self interstitials generated in irradiated metals often con-
tain a component that adopts the form of a one-dimensional dif-
fuser along the crystallographic close-packed directions. In this
section, we investigate the consequence of the presence of this
component on the void coarsening process discussed in Section 2.

We call the average distance between consecutive changes of
the direction of motion of the 1-D diffuser the mean free path
(MFP). Depending on intrinsic parameters such as inter-atomic
interaction, crystallographic structure, and extrinsic parameters
such as the void-number density, impurity content, etc., the MFP
varies. Let us first consider the case where the MFP is much smaller
than the average distance between voids.

3.1. Short MFP case

The contribution of 1-D SIAs to the growth rate of the mth void
in this case is given by [9]

R2
m

dRm

dt

����
1�D interstitials

¼ � eiGR2
m

4p½N�R2 þ qdd=4�
; ð14Þ

where �R2 is the average square void radius, and d is the effective
diameter of absorption of 1-D SIAs by dislocations. From Eqs. (13)
and (14), the dynamic equation for dRm becomes,

R2
m

dðdRm=RÞ
dt

¼ 2ðZ � 1Þqd

ð4pNRþ qdÞ

� ~Gþ G0 � ð1� eiÞG�
eiGð4pNRþ qdÞ

2ðZ � 1Þqd

4pNR2 þ 2pqdd� qdR

4pNR2 þ pqdd

" #

� dRm

R

� �
: ð15Þ

This equation shows that the presence of 1-D diffusing component
tends to stabilize the dynamics of the void ensemble. Indeed, voids
with a smaller than average surface area receive a reduced 1-D
interstitial flux and thus grow faster, while the larger voids absorb
a higher-than-average flux of such interstitials and grow slower.
The presence of 1-D self-interstitials tends to sharpen the void size
distribution and thus opposes the broadening effect of vacancy
emission.

The presence of the 1-D diffuser changes the stability conditions
via the void-growth rates. From Eqs. (10) and (14), the average void
growth rate is given by

dR
dt
¼ qd

Rð4pNRþ qdÞ
2

� ðZ � 1Þ½ð1� eiÞG� G0� � ei
4pNR2 þ qdR

4pNR2 þ pqdd
1� pd

R

� �( )
:

ð16Þ

Having assumed ei << (Z – 1), the conventional dislocation bias can
be considered as the major driving force for void growth in the pres-
ent case. At the point when void lattices are experimentally obser-
vable, the voids are usually the major sinks, i.e., 4pNR >> qd. Thus,
even when the dislocation bias dominates the void growth, the last
term in brackets in Eq. (15) is still non-negligible. This leads to a
shift in the instability conditions towards a higher temperature.
Nevertheless, due to the exponential dependence of Kcr on the irra-
diation temperature this quantitative shift is not important.

3.2. Long MFP case

When the MFP of the 1-D diffuser is comparable with the aver-
age void separation, the qualitative effect of 1-D diffusion becomes
important. Indeed, due to the overlap of 1-D diffusing fields, the
Woo–Frank theory [2,3] suggests that voids sufficiently close to
each other along close-packed crystallographic directions receive
a reduced 1-D interstitial flux compared to that given by Eq. (14).
This may then cause the dynamic instability of a homogeneously
distributed void ensemble, and the resulting bifurcation may lead
to the disappearance of the non-aligned voids. The critical dose
was calculated neglecting both stochastic effects and vacancy
emission from the voids, and was found to be much too high com-
pared with experimental observations [3]. Furthermore, as shown
in [9], 1-D self-interstitial diffusion by itself does not cause the dis-
appearance of the non-aligned voids. It only leads to a stationary
state in which the aligned and non-aligned voids coexist, saturat-
ing at different sizes. Without a mechanism via which the non-
aligned supercritical voids selectively disappear during evolution,
it remains unclear how a well-defined void lattice may emerge.

In the following we will show that when dynamic stability is
lost (i.e., K < Kcr), the void ensemble would evolve, in the presence
of a flux of long-MFP 1-D self-interstitials, in such a way that the
non-aligned voids completely dissolve, leaving only the aligned
ones to grow further. It is also worth noting that in the present case
the characteristic time for instability development in Eq. (15) is
comparable with that for the average void growth in Eq. (16).

Thus, when the 1-D diffusion fields among neighboring aligned
voids overlap, the 1-D interstitial flux received by each void is gi-
ven by [9]

R2
m

dRm

dt

����
1�D interstitials

¼ � eiGR2
mU

4p½NAV
�R2

AVUAV þ NRV
�R2

RV þ qd=4�
; ð17Þ

where NRV and �R2
RV (NAV and �R2

AV) are the concentration and the aver-
age square radius of the non-aligned (aligned) voids, respectively. U
differentiates between the growth rates of the aligned and non-
aligned voids. For the non-aligned voids, U = 1. For the aligned voids
U = UAV, which takes into account the reduction in the 1-D intersti-
tial flux given by [9]

UAV ¼
ðð2M � qÞ tanhðL=kÞ þ q tanhðL=2kÞÞ

2M
; ð18Þ

where L is the nearest-neighbor distance in the void lattice, q is the
average number of nearest void-lattice sites occupied by a void, and
k = (D1sc)1/2 is the MFP along the close-packed atomic directions. D1

is the 1-D diffusion coefficient and sc the mean lifetime between
migration direction changes. In Eq. (18) we have also assumed that
if the void is not in the crowdion supply cylinders (CSCs) of its near-
est neighbors, then it is in the CSCs of the corresponding next near-
est neighbors. Note that UAV has a value of less than 1 and decreases
with decreasing L/k in general.

We have shown in [9] that, when the average distance between
existing voids is comparable with the MFP of the 1-D diffuser, voids
nucleate and grow practically exclusively in the small regions near
the empty void lattice sites. This is because the probability of void
nucleation is orders of magnitude higher in these localities, where
there is a reduced self-interstitial flux [9]. In this regard, the
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exponential dependence of the nucleation probability on the net
vacancy flux has also been shown in [23]. As a result, two subsys-
tems exist in the void ensemble: aligned voids along the close-
packed atomic directions and the non-aligned ones.

To properly describe void nucleation when the vacancy emis-
sion is important, the growth of thermally unstable void embryos
has to be considered beyond the critical size, which can only be
achieved via stochastic fluctuations. This means that the determin-
istic Eq. (8) for void growth should be generalized to include the
effect of stochastic fluctuations in point-defect fluxes received by
the voids [23]. However, since the void coarsening considered in
this paper is driven by vacancy emission and not stochastic fluctu-
ations, the complete stochastic treatment that has to be performed
is much too complex within the present scope. Instead, we adopt a
simplified approach in the following and consider only the simul-
taneous evolution of two subsystems (the aligned and non-aligned
voids) under the prevalence of the instability conditions.

When stochastic fluctuations are neglected, we may assume
that each subsystem of the void ensemble can be characterized
by the corresponding average radius RAV and RRV for the aligned
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Fig. 2. Time dependence of the average radii of aligned (UAV = 0.5) and non-aligned vo
and non-aligned voids, respectively. Then, the mean-field growth
rate of voids in each subsystem, due to the 3-D moving point de-
fects, can be found from the conventional rate equations. As a re-
sult, with the account of the 1-D self-interstitial flux given by Eq.
(17), the total growth rate of aligned voids can be written as

RAV
dRAV

dt
¼ ½G� DvqdðCsðRAVÞ � C1Þ � 4pNRVRRVðCsðRAVÞ � CsðRRVÞÞ�

ð4pNAVRAV þ 4pNRVRRV þ qdÞ

� ð1� eiÞG
ð4pNAVRAV þ 4pNRVRRV þ ZqdÞ

� eiGRAVUAV

4p½NAVR2
AVUAV þ NRVR2

RVURV þ qd=4�
: ð19Þ

Substitution AV M RV transforms Eq. (19) into the rate equation for
the average radius of the non-aligned voids.

4. Results and discussions

Numerical integration of Eq. (19) for the aligned and the
non-aligned voids are preformed and the results are presented in
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Figs. 2(a–c) as a function of dose for aluminum. The number density
of aligned voids NAV chosen in the calculations corresponds to a
void-lattice constant of �250 nm. Comparing Figs. 2(a–c) shows
the obvious presence of criticality in the behavior of the void
ensemble. In Fig. 2(a) both the aligned and the non-aligned voids
are monotonically growing, while in Fig. 2(b) the initial growth of
non-aligned voids reverses to shrinkage subsequently. The rather
drastic difference in the system behavior represented in the two fig-
ures is only caused by a small difference in effective generation
rates of G = 2.5 � 10�8 in Fig. 2(a) and 2.0 � 10�8 dpa/s in
Fig. 2(b). The non-aligned voids in Fig. 2(b), which are initially
supercritical, become subcritical during further evolution and, as
a result, disappear completely. Similarly, in Fig. 2(c), the total dislo-
cation density is only slightly lower than that in Fig. 2(a). Yet,
depending on the irradiation conditions and microstructure charac-
teristics, the irradiation dose required for the shrinkage of the non-
aligned voids can vary within a very wide range of values. This also
explains why under practically identical experimental conditions
(neutron flux ffi0.6 � 1018 n/m2/s, E > 0.1 MeV, i.e., dose rate
K ffi 5.2 � 10�8 NRT dpa/s [18], irradiation dose Kt ffi 19 NRT dpa,
temperature T = 323 ± 5 K) voids in irradiated aluminum in one
set of experiments are found to be randomly distributed [18], while
in another the formation of a void hyperlattice was observed [29].

To illustrate the critical nature of the behavior of this two-com-
ponent void ensemble, we generalize the expressions for G0 and ~G
in Eqs. (11) and (12), derived for a single-component void system,

G0 ffi
8pDvC1csXð1þ qd=k2

c ÞðNAV þ NRVÞ
ðZ � 1ÞRkT

; ð20Þ

~G ffi ðk
2
c þ qdÞ

2

ðZ � 1Þqd

Dv½CsðRAVÞNAV=RAV þ CsðRRVÞNRV=RRV�csX
ðNAV þ NRVÞkT

: ð21Þ

Here k2
c = 4p(NAVRAV + NRVRRV) is the total void sink strength. In

Fig. 3 we show the time dependence of the ratio of Kcr ¼ ð~Gþ G0Þ
=ec to the corresponding nominal generation rate K = G/ec for the
three cases presented in Fig. 2. An initial decline in the ratio Kcr/K
can be seen in Fig. 3, followed by a subsequent increase as the voids
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Fig. 3. Time dependence of the critical ratio Kcr/K for the cases presented in Fig. 2.
grow, leading to the loss of stability when Kcr/K > 1 (see Figs. 2(b)
and (c). At this point, the process of void coarsening starts and
the smaller non-aligned voids eventually become subcritical and
shrink away. These results corroborate very well experimental
observations in void hyperlattice formation in aluminum, in which
void sizes just before the void ordering takes place (at 6 NRT dpa)
are found to vary in a wide range between 8 and 80 nm in diameter
[28].

When Kcr/K < 1, both the aligned and non-aligned voids con-
tinue to grow (Fig. 2(a)). In this case, an increase of the 1-D self-
interstitial flux received by the non-aligned voids only produce a
small reduction in the average void sizes compared to the aligned
voids, and does not lead to their dissolution at all. Note also that
the difference between the average sizes of the aligned and non-
aligned voids decreases with the decreasing ratio Kcr/K, due to
the reduction of the effect of vacancy emission on the evolution
of the smaller voids.

The present results show that for irradiation temperatures high-
er than 0.4Tm, vacancy emission from the voids can play an impor-
tant role in the shrinkage of the non-aligned voids. Unlike
stochastic void coarsening, voids in the present case do not have
to be small for the shrinkage to occur. On the contrary, it is actually
the continuous growth of voids that creates the necessary condi-
tion for the dissolution of the non-aligned voids. Indeed, from
Eqs. (9) and (12), an increase of the void sink strength increases
the controlling parameter ~G and pushes the system to coarsen. It
is the smaller net vacancy flux (see the first two terms in Eq. (9))
that causes the initially supercritical non-aligned voids to become
subcritical eventually. Thus, to instigate the shrinkage of non-
aligned voids via vacancy emission, the sizes of the voids forming
the lattice can be very large (tens or even hundreds of nanome-
ters). However, for either mechanism, the shrinkage of the non-
aligned voids is accomplished via sufficiently high void sink
strength, as envisioned in the Woo–Frank theory [2]. The differ-
ence is that at lower temperatures, when vacancy emission from
the voids is insignificant, this is achieved via a high number density
of small voids [9].

According to the foregoing theory, the lattice constant of a hy-
per void lattice may give a good estimation of the MFP of the 1-
D diffuser k. In this regard, the void-lattice constant in niobium
at T = 1010 �C is found to be 146 nm [35], in Mo at T = 1120 �C it
is about 100 nm [36]. From the thermodynamic point of view, it
is reasonable to assume that the MFP k at lower temperatures is
at least as long as those indicated at a higher temperature. In the
temperature range where vacancy emission is unimportant, the
void-lattice constants in molybdenum and niobium can be as small
as 20–30 nm [5,26,35], corresponding to a ratio of 2k/L � 10, or a
value of tanh(L/2k) � 0.1. Putting NRV in Eq. (19) to zero and taking
into account that at the lower temperatures q/k2

c � 10-2, one can
deduce that the voids in the lattice should saturate at a size of
RAV = pd/UAV/[1 – (Z – 1)(1 – ei)/ei] if ei > (Z – 1). For randomly dis-
tributed voids, a similar consideration arrives at a saturation size
of RRV = pd/[1 – (Z – 1)(1 – ei)/ei] (see also Eq. (16) and Ref. [9]).
Note that for randomly distributed voids, the mean distance L1 be-
tween two traps absorbing the one-dimensional random walkers is
given by L1 ¼ 2=pR2

RVN. This means that, if the void swelling
S ¼ 4pR3

RVN=3 is less than 1%, which often is the case
[5,26,27,37], the ratio L1/k = (2/p1/3)(4/3S)2/3N�1/3/k) > 3, even
when kN1/3 � 10. Thus, we still have URV � 1. Experimental obser-
vations at lower temperatures show that the diameter of the voids
forming the lattice can be as small as 3–4 nm [5,26]. Then it follows
from Eq. (19) that if ei > (Z – 1) random voids cannot exist in prac-
tice. This is contrary to experimental observations where random
voids have average void sizes at least comparable with the aligned
voids [26]. Thus, our assumption of ei � 1% is justifiable (see also
Introduction and Ref. [9]).
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In the present investigation, the role of the 1-D diffusers, which
maintain the crystallographic relationship between the void and
host lattice, is just to provide a mechanism via which voids
destined to grow versus those destined to shrink during the
coarsening process caused by the dynamic instability in the evolu-
tion of the void ensemble are differentiated. In this regard, it is
worth noting that this mechanism does not distinguish between
single SIAs in the <111> dumbbell/crowdion configurations which
are often the ground-state configuration in the nonmagnetic bcc
metals [38,39], and the crowdion clusters. Due to the relatively
easy activation of the dumbbell/crowdion rotation (activation en-
ergy � 0.2–0.4 eV), their associated kinetics at elevated tempera-
tures are predominantly three-dimensional in character. The
probability of a sufficiently long 1-D motion for hyperlattice for-
mation is expected to be low. Consequently, the effective fraction
ei of interstitials, which do not participate in the three-dimensional
motion, will be low in this case as well. Of course, there is also the
possibility that the 1-D self-interstitial diffuser responsible for the
two types of void lattices may be different.

5. Summary and conclusion

We have investigated the evolution of a void ensemble in the
presence of one-dimensionally migrating self-interstitials in a tem-
perature range where the effect of vacancy emission is important.
We find that when the effective point-defect generation rate is suf-
ficiently low, the evolution of the void ensemble may become
dynamically unstable, resulting in the coarsening of the void distri-
bution. The presence of one-dimensionally migrating self-intersti-
tials with mean-free path comparable to the average distance
between voids can bias the void coarsening process such that the
non-aligned voids shrink, leaving the aligned ones to grow. An
imperfect lattice with empty lattice sites may then form. Due to
the overlapping diffusion fields of neighboring voids, these sites
are subjected to a reduced 1-D interstitial flux and are preferred
void nucleation sites, which were eventually filled, completing
the void lattice formation process.
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